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Abstract

A structural multilevel model is presented where some of the variables cannot be

observed directly but are measured using tests or questionnaires. Observed dichotomous or

ordinal polytomous response data serve to measure the latent variables using an item response

theory model. The latent variables can be defined at any level of the multilevel model. A

Bayesian procedure, MCMC, to estimate simultaneously all parameters is presented. It is

shown that certain model checks and model comparisons can be done using the MCMC output.

The techniques are illustrated using a simulation study and an application involving student's

achievements on a mathematic test and test results regarding management characteristics of

teachers and principles.

Key words: Gibbs sampler, graded response model, hierarchical linear models, item response

theory, Markov Chain Monte Carlo, measurement error, Metropolis-Hastings, multilevel IRT,

multilevel model, two-parameter normal ogive model.
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Introduction

School effectiveness research is a major topic in education, especially in light of the

concern for evaluation of differences in achievement and accountability. Main interest is put in

identifying the characteristics of effective schools and criteria for measuring effectiveness. The

methods of measuring school effectiveness have been changed radically with the development

of multilevel analysis. The hierarchical structure of educational systems emphasizes the

necessity of multilevel modeling. Multilevel analysis enables that the data are treated in

an appropriate manner, instead of being reduced to a single level. The differences between

classes and schools can be taken into account properly, rather than aggregated arbitrarily. In

this framework, most of the variance is explained by student background variables, such as

intelligence and socio-economic status, other parts of the variance can be explained by class

or school factors. Applications of multilevel models to educational data can, for example, be

found in Bock (1989) and Goldstein (1995).

In a standard application in school effectiveness research there are several schools,

with varying numbers of students, and each student has a test score. Interest is focused on the

effect of student and school characteristics on the students' achievements. A major component

in the analysis is the use of achievement scores as a measure of effectiveness. Most often,

schools are compared in terms of the achievements of the pupils, and test scores are used

to represent these achievements. Students' achievements cannot be observed directly but are

observed by manifest variables or proxies. It may also be possible that some explanatory

variables on different levels are observed by manifest variables, such as, intelligence, socio-

economic status, or community loyalty. Obviously, errors of measurement are inherent to

manifest variables. Traditionally, the manifest variables are used in further analyses as fixed

and known entities. An important deficiency is that the measurement error associated with the

test scores are ignored. This error can have an effect on the estimates of the parameters of the

multilevel model, that is, the standard errors of the parameters are underestimated. In general,

the use of unreliable variables leads to biased estimation of the regression coefficients and the

resulting statistical inference can be very misleading.

This problem can be handled by extending an item response theory (IRT) model to

a multilevel item response theory model consisting of a latent variable assumed to be the

outcome in a regression analysis. This model has already become an attractive alternative to the

traditional multilevel models. This model is often presented as two or three-level formulation

of an item response model, that is, a multilevel regression model is imposed on the ability
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parameter in an item response model. Verhelst and Eggen (1989) and Zwinderman (1991,

1997) defined a structural model for the one parameter logistic model and the Rasch model

with observed covariates assuming the item parameters are known. Zwinderman also illustrates

the possibility for modeling differential item functioning. Adams, Wilson and Wu (1997) and

Raudenbush & Sampson (1999) discussed a two and three level hierarchical logistic regression

model which can be seen as a Rasch model embedded within a hierarchical structure. The first

level of the multilevel model describes the relation between the observed item scores and the

ability parameters. This two and three-level model can be estimated in HLM 5 (Raudenbush,

Bryk, Cheong, & Congdon, 2000). Kamata (2001) defined the multilevel formulation of the

Rasch model as a hierarchical generalized linear model that can be estimated within the HLM

software. Also, Maier (2001) defines a Rasch model with a hierarchical model imposed on

the person parameters but without additional covariates. Fox and Glas (2001, 2002) extended

the two-parameter normal ogive model by imposing a multilevel model, with covariates on

both levels, on the ability parmeters. This multilevel IRT model describes the link between

dichotomous response data and a latent dependent variable within a structural multilevel model.

They also showed how to model latent explanatory variables within a structural multilevel

model using dichotomous response data.

All these developed models can handle dichotomous response data, that is, the Rasch

model or the normal ogive model is used as an item response model for measuring the latent

variables. But data collected from respondents utilizing questionnaires and surveys are often

polytomous. For example, the use of Likert items on questionnaires is frequently used in

educational and psychological measurement. Treating the polytomous data as continuous

and ignoring the ordinal discrete nature of the data can lead to incorrect conclusions (Lee,

Poon, & Bent ler, 1992). On the other hand, transforming the polytomous data to dichotomous

data, by collapsing response categories to enforce dichotomous outcomes, leads to a loss of

information contained in the data. The best way is to extend the models to handle polytomous

data measuring one latent ability. In the present paper, attention is focused on measuring latent

dependent and independent variables of a multilevel model where manifest variables, consisting

of binary, ordinal, or graded reponses, are available. This extension makes it possible to model

relationships between observed and latent variables on different levels using dichotomous

and polytomous item response theory models to describe the relationship between the test

performances and the latent variables. That is, relationships between abilities of students

underlying the test and other observed variables or other measurements of some individual

or group characteristics can be analyzed taking into account the errors of measurement using
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dichotomous or polytomous indicators.

.... It will be shown that adopting a fully Bayesian framework results in a straightforward

and easily implemented estimation procedure. That is, a Markov Chain Monte Carlo method

will be used to estimate the parameters of interest. Computing the posterior distributions

of the parameters involves high dimensional integrals but these can be carried out by Gibbs

sampling (Gelfand, Hills, Racine-Poon, & Smith, 1990, Gelman, Carlin, Stern, & Rubin, 1995).

Within this Bayesian approach, all parameters are estimated simultaneously and goodness-of-fit

statistics for evaluating the posited model are obtained.

After this introduction, the model will be presented. In the next section, prior

choices and the estimation procedure will be discussed. Then, several criteria, as the posterior

predictive check, pseudo-Bayes factor and the marginal likelihood, are introduced to assess the

model fit. In the following section a simulation study and a real data example will be given.

The last section contains a discussion and suggestions for further research.

Model Description

Educational or psychological tests are used for measuring variables as intelligence and

arithmetic ability which cannot be observed directly. Interest is focused on the knowledge or

characteristics of students given some background variables but only the performance on a set

of items is recorded. Item response theory models can be used to describe the relationship

between the abilities and the responses of the examinees to the items of the test to assess the

abilities of the examinees. The class of item response theory (IRT) models, is based on the

charateristics of the items in the test. The dependence of the observed responses to binary or

polytomously scored items on the latent ability is specified by item characteristic functions. In

case of binary items, the item characteristic function is the regression of item score on the latent

ability. Under certain assumptions it is possible to make inferences about the latent ability from

the observed item responses using the item response functions. In specific, the probability of a

student corresponding correct to an item k (k = 1, . . . , K) , is given by

P (Yk = 110, ak, bk) (1) (ak0 bk) , (1)

where 4) (.) denotes the standard normal cumulative distribution function, and ak and bk are the

discrimination and difficulty parameter of item k. Below, the parameters of item k will also be

denoted by (ak) bk)t . The relation between the underlying latent ability, 0, and the

7
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dichotomous outcomes can also be explained as follows. Assume a latent independent random

variable Zk normally distributed with mean ak0 bk and variance 1. Further, the response

Yk is the indicator of Zk being positive. Thus, a correct response on item k is obtained if a

positive value is drawn from this normal distribution with mean ak0 bk and variance 1. In

Appendix A it will be shown that the introduction of the latent random variables simplifies the

implementation of the MCMC algorithm.

The transition to polytomous scored items can be done by defining the polytomous

response, Y, as an indicator of Z falling into one of the response categories. Or the other way

around, classifying the latent variable Z into more than two categories is done by the cutoff or

threshold parameters K. In this case, the latent variable Z is defined as

Zk = ake + Ek (2)

where ek is assumed to be standard normal distributed. When the value of the latent variable

Zk falls between the thresholds nkc_i and Kkc, the observed response on item k is classified into

category c. The ordering of the response categories is displayed as follows,

00 < kkl < /CU < < kkCk (3)

where there are Ck categories. Notice that the number of categories may differ per item. Here,

for notational convenience, Ko = oo and the upper cutoff parameter Ickck = oo for every item

k (k = 1, . . . , K) . The probability that an individual, given some underlying latent ability, 0,

obtains a grade c, or gives a response falling into category c on item k is defined by

P (Yk = c 19, ak, kk) = 4 (Kkc ak0) (nkc_i akt9) , (4)

where (I) 0 denotes the standard normal cumulative distribution function. This item response

model, called the graded response model or the ordinal probit model, for polytomous scored

items have been used by several researchers, among others, Johnson and Albert (1999), Muraki

and Carlson (1995) and, Samejima (1969). Notice, the cumulative probability model for ordinal

polytomous response data, formula (4), implies that the slope parameters of different categories

within an item must be constrained to be equal, see Mellenbergh (1995).

The measurement model is sometimes of interest in its own right, but here attention

is focused on relations between latent variables and other observed variables. The structural
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multilevel model defines the relations between the underlying latent variables and other

important variables at different levels. In the present paper, a sample of clusters, say schools,

indexed j = 1, . . . , J is considered. A total of N Individuals, labeled i = 1, . , n3,

j = 1, . . . , J, are nested within clusters. Consider at Level 1, an observed or latent dependent

variable w and Q covariates, where Q q covariates are observed without an error, Xij, and

q latent covariates At Level 2, S covariates are considered, containing S s covariates

observed without an error, W3 of dimension (Q x (S s)), and s latent covariates Ci of

dimension (Q x s) . This corresponds with the following structural multilevel model

wii = [K+;, 923] + eij

j = -y' Ci] + u;

(5)

where eij ti N (0, o-2) , and uj ti N (0, T) . Notice, the coefficients, regarding the observed

and latent covariates at Level 1, vary over Level 2 clusters and are both regressed on observed

covariates W and latent covariates C.

Both measurement models, the normal ogive and the graded response model are not

identified. The models are overparameterized and require some restrictions on the parameters.

The most common way is to fix the scale of the latent ability to a standard normal distribution.

As a result, the multilevel IRT model, (5), is identified by fixing the scale of the latent abilities.

Another possibility is to impose identifying restrictions on the item parameters. In case of the

of the normal ogive model, this can be done by imposing the restriction, IL ak = 1, and ,

Ek bk = 0.

Besides the regression among latent variables, it is possible to incorporate latent

variables at the lower level as a predictor of latent abilities at the higher level. In Fox and

Glas (2002), an example is given of a covariate representing adaptive instruction of teachers,

measured with a test consisting of 23 dichotomous items, predicting the abilities of the students.

Below, an example will be given of school climate reflecting students' math abilities, where

school climate will be measured with 23 polytomous items and the math abilities by 50

dichotomous items.

Handling response error in both the dependent and independent variables in a

multilevel model using item response theory has some advantages. Measurement error can

be defined locally as the posterior variance of the ability parameter given a response pattern

resulting in a more realistic, heteroscedastic treatment of the measurement error. Besides the

fact that in IRT reliability can be defined conditionally on the value of the latent variable offers
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the possibility of separating the influence of item difficulty and ability level, which supports

the use of incomplete test administration designs, optimal test assembly, computer adaptive

testing and test equating. Further, it is possible handle various kinds of item responses to

assess the ability of interest without simplifying assumptions regarding the discrete nature of

the responses.

Parameter Estimation

Let y be the matrix of observed data, where y = (y", y9, y4) denote the observed

data in measuring the latent abilities w, 9 and C, respectively. The likelihood of the parameters

of interest of model (5) is a product of the likelihood for the J groups, that is,

(,72,11, T I Y) = JJf f f I r wii) P eij 13j, 72)

J [f (yqii I 4, eqij) p (90j; 110q) 4q) Aid &Aid

p (0 , T) H [f hs (Y; I 6 (.9;) P (Csi; (48) d(sd
8

, (6)

where f (y I V', coij) is an IRT model, specifying the probability of the observing response

pattern y as a function of the ability parameter wij and item parameters Further,

9q I fig, 9 qij) is an IRT model for qth latent explanatory variable on Level 1, Oqij, using

dichotomous or polytomous response data ygeii and item parameters In the same way,

ks (4 I is an IRT model for the sth latent explanatory variable on Level 2, Csi, using

the observed data ys(ii and item parameters Here, it is assumed that the latent explanatory

variables 0 and C are both mutually independent. It is possible to model correlated latent

covariates at the same level. Fox and Glas (2002) transformed the parametrization of the latent

variables in such a way that the latent variables are independent. The same procedure can be

applied.

Computing expectations of marginal distributions using, for example, Gauss-Hermite

quadrature is difficult and becomes infeasible when the number of latent variables is increasing.

Furthermore, the frequentist methods that rely on large-sample theory will not be appropriate

when the sample size regarding the number of items, the number of respondents or the

number of group sizes is small. In specific, the asymptotic properties are easily violated

in case of small groups of discrete responses. On the other hand, a Bayesian approach has

10
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the advantage that computations for estimation can be based on MCMC methods, which

circumvent the computation of high dimensional integrals. Moreover, the Bayesian approach

gives the possibility to model all dependencies among variables and all sources of uncertainty.

Priors

Bayesian procedures require the specification of priors, that is, in order to form a

posterior density, all prior distributions of all model parameters must be specified. Diffuse

proper priors will be used to reflect vague beliefs about the parameter values. In formula (6) ,

it is assumed that the latent abilities are drawn from a normal distribution. As mentioned,

identification of the model can be done by specifying the scale of the latent variables, for

example, by stating that each latent variable is standard normal distributed. The Bayesian

approach has the advantage that the identification of the model can be done by defining an

appropriate prior for the latent abilities.

The normal ogive model has two item-specific parameters, a discrimination and a

difficulty parameter, formula (1) . The prior for the difficulty and discrimination parameter

insured that each item had a positive discrimination index, and assumed independence between

the item difficulty and discrimination parameter,

p () = p (a) p (b) oc 11.1(ak > 0) I (ak, bk E A) ,

k=1
(7)

where A is a sufficiently large bounded interval. The prior for the item-parameters in the graded

response model, formula (4) , can be specified in the same manner. That is,

P = p (a) p (K) o IP (ak > co I (ak, Kk1, , kkCk E A) ,
k=1

(8)

subject to the condition (3) , and A is again a sufficiently large bounded interval. It is assumed

that nothing is known about the distribution of the responses in categories. So, uniform

distributed prior information is specified for the threshold parameters, obeyed to restriction

(3).

Particular parameters of the inverse-gamma distribution are selected to specify a

relatively vague but proper priors for the variances of the random errors in the structural

multilevel model. The random errors on different levels are assumed to be independent. The

random errors on Level 2 may correlate and if prior knowledge is available it is possible to
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specify this with an inverse-wishart distribution for the variance matrix T.

Jeffreys' prior was used for the fixed effects, that is, y c, where c is a constant. The

impropriety of Jeffreys' prior does not result in an improper posterior of the fixed effects.

Posterior Simulation

The likelihood in (6) involves computation of high order multidimensional integrals

and makes classical inference based on maximum likelihood extremely difficult. Inference

about the unknown parameters within a Bayesian framework is based on their joint posterior

distribution. The joint posterior distribution of the parameters of interest is very complex

but simulation based methods circumvent the computation of high dimensional integrals. An

MCMC algorithm is considered to obtain random draws from the joint posterior distribution

of the parameters of interest given the data. The Markov chains are relatively easy to

construct and the MCMC techniques are straightforward to implement. Fox and Glas (2001,

2002) implemented a Gibbs sampler for a structural multilevel model with a latent dependent

variable and a structural multilevel model with latent independent variables using dichotomous

responses. The extension to a structural multilevel model with latent dependent and

independent variables and dichotomous and polytomous response data is quite straightforward.

The basic idea is introducing augmented data in order to draw samples from the conditional

distributions of the parameters (Tanner & Wong, 1987). This has been described by Albert

(1992), Albert and Chib (1993), and Johnson and Albert (1999) for the normal ogive model

and the ordinal probit model, and extensively used in estimating parameters of complex models,

among others, Ansari and Jedidi (2000), Beguin and Glas (2001), and Fox and Glas (2001). The

full conditionals of all parameters can be specified, see Appendix A, and the Gibbs sampler is

used to estimate the parameters. Each iteration of the Gibbs sampler consists of sequentially

sampling from the full conditional distributions associated with the unknown parameters,

{w, 9, /3, Q2, , , -y, T , and sampling the augmented data to circumvent the need

for integration procedures.

The convergence of the Gibbs sampling algorithm can be accelerated by using a

Metropolis-Hastings step for sampling the cutoff parameters (Cowles, 1996). But constructing

a suitable proposal density for the cutoff parameters can be quite difficult. Here, a new

candidate is generated for cutoff parameter nc, the upperbound of category c, from a normal

distribution,

(9)
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where re) is the value of me in the mth iteration of the sampler. The variance of the proposal

distribution, o-2mH, must be specified appropriately to establish an efficient algorithm, that is,

the simulations are moving fast through the target distribution (Gelman, Roberts, & Gilks,

1996). In the present paper, the variance of this proposal distribution is adjusted within the

sampling procedure. This fine tuning of the proposal distribution results in a good and efficient

convergence of the algorithm without detailed prior information regarding the variance of

the proposal distribution. In specific, say, after each 50th iteration the acceptance rate, see

Appendix A, regarding the threshold parameters is evaluated. If the acceptance rate is low, a

high percentage of the sampled new candidates were rejected, the variance 4 H is too high.

The other way around, if the acceptance rate is high, a high percentage of the sampled new

candidates were accepted, the variance oini is too low. In both situations the variance is

adjusted in the right direction. Here, the variance cr2mH is adjusted to obtain an acceptance rate

of approximately .5 which was found to be optimal for univariate Metropolis-Hastings chains

of certain types (Gelman, Roberts, & Gilks, 1996).

Under general conditions converges the Markov chain of sequential draws in

distribution to the joint posterior distribution (Tierney, 1994). Convergence can be evaluated by

comparing the between and within variance of generated multiple Markov chains from different

starting points (see, for instance, Robert & Casella, 1999, pp. 366). Another method is to

generate a single Markov chain and to evaluate convergence by dividing the chain into sub-

chains and comparing the between- and within-sub-chain variance. A single run is less wasteful

in the number of iterations needed. A unique chain and a slow rate of convergence is more

likely to get closer to the stationary distribution than several shorter chains. In the examples

given below, the full Gibbs sample instead of a set of sub-samples from this sample was used

to estimate the parameters. The latter procedure leads to losses in efficiency (MacEachern

& Berliner, 1994). Further, the CODA software (Best, Cowles, & Vines, 1995) was used to

analyze the output from the Gibbs sampler and the convergence of the Markov chains. Finally,

after the Gibbs sampler had reached convergence and "enough" samples were drawn, posterior

means of all parameters of interest were estimated with the mixture estimator, to reduce the

sampling error attributable to the Gibbs sampler (Liu, Wong, & Kong, 1994). The posterior

standard deviations and highest posterior density intervals can be estimated from the sampled

values obtained from the Gibbs sampler (Chen & Shao, 1999). The Appendix describes the

different simulation steps and further details of the full conditional distributions.
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Model Assessment

The plausibility of the model, or its general assumptions, can be assessed using

posterior predictive checks (Gelman, Meng, & Stem, 1996). Let y be the observed data and

yreP be the replicate observations given all model parameters, denoted as A. Samples of the

unknown model parameters are available via the MCMC algorithm. The observed data can be

compared with the sampled replicated data using some test quantity or discrepancy L. The test

quantity may reflect some standard checks on overall fitness or on some specific aspects of the

model. A posterior predictive p-value given by

P (3) = P (L (Y" P, P A) > L (3 A) I Y,H) (10)

quantifies the extremeness of an observed value of the test quantity under model H. This

probability can be approximated from a sample of, say M, MCMC draws of the model

parameters with

M

p (L (y(Z), A(m) L (y, km)) I y,H)
m=1

where I (.) denotes the indicator function. For p-values close to zero or one the posited model

does not fit the data, regarding the test quantity.

An overall fit test statistics, a X2-discrepancy as defined by Gelman, Meng, and Stem

(1996), can be used to judge the fit of the model, that is,

L (y, = EN
K N-(yik- E (yak A))2

V ar (Yik I A)k=1 i=1

(12)

for N persons responding to K items. In fact, the X2-discrepancy is the sum of squares of

standardized residuals with respect to their expectations under the posited model. A lack

of fit, a p-value close to zero or one, indicates that the observed data are not close to the

replicated data under the hypothesized model H. Here, an item response theory model, as a

part of the multilevel IRT model H, relates the observed data to a latent variable within the

structural multilevel model. Intuitively, a lack of fit under the X2-discrepancy provides mainly

information regarding the fit of the item response theory model. In the examples below, this

will turn out to be the case.

14
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Comparing models

Bayes factors are often used when choosing between a set of competing models (see,

e.g., Kass and Raftery, 1995). The underlying Bayesian argument is choosing the model for

which the marginal likelihood of the data is maximal. However, there are some shortcomings

regarding the Bayes factors, besides the computational problems in calculating them for high

dimensional models. First, Bayes factors are not defined when using improper priors. Second,

the Bayes factor tends to attach to little weight to the correct model given proper priors and an

arbitrary sample size, see Gelfand and Dey (1994). Here, the pseudo-Bayes factor (PsBF) is

used in comparing models which avoids these problems (Geisser & Eddy, 1979).

The pseudo-Bayes factor is based on the conditional predictive ordinate (CPO), also

known as the cross-validation predictive density. Consider i = 1, . . . , N students responding

to k = 1, . . . , K items. Let y(ik) denote the observed data without a single response of student

i on item k. Accordingly, the CPO is defined as

P (yik I Y(ik)) = f P (yik I Y(ik), A) p (A I Y(ik)) dA, (13)

A represent the model parameters. It follows that p (yik I Y(ik), A) = p (yik I A) , due to

conditional independence, that is, the responses on different items are independent given the

ability and the responses of the students are independent of one another. These properties

makes the evaluation of the cross-validation predictive density, formula (13) , relatively

straightforward. That is, consider p (A I y) as the importance sampling function. Given M

MCMC draws of A(1), , ACM) a Monte Carlo estimate of the cross-validation predictive

density (13) , is given by

fi(Yik Y(ik)) = pon) (yik)
v.m

m=1

1
(14)

where p(m) (yik) is the probability on the single reponse yik, given sampled parameters A(m),

that is, the probability for scoring correct or incorrect, formula (1) or the probability for scoring

in a certain categorie on item k, formula (4). The CPO is estimated by the harmonic mean of

the likelihoods using a sample from the posterior distribution p (A I y), and for M oo this

estimate converges almost surely to the correct value (Newton & Raftery, 1994). This method

can be used to estimate the pseudo-Bayes factor. The PsBF for comparing two models, H1 and



Multilevel IRT Using Dichotomous and Polytomous Response Data - 14

H2, is defined in terms of products of CPO's

PsBF = P (Yik I Y(ik), Hi)
f

Ij,k P kYik Y(ik), H2)
(15)

where yik denotes the response of student i on item k. Calculating the PsBF is straightforward

using formula (14) .

Most of the Bayes model assessment procedures are based on estimates of the

marginal likelihood. The pseudo-Bayes factor, formula (15), is based on the observed response

data. Other informal likelihood or penalized likelihood criteria can also be used for model

comparison. The fit of the structural multilevel model, formula (5) , can be based on the

marginal likelihood of the multilevel parameters. The log-likelihood information of the

multilevel parameters can be estimated using the output from the MCMC sampling scheme.

An estimate of the marginal likelihood is the average of the log-likelihoods at each of the

sampled points, that is,

1T I 3r,H) = A7 E
m =1 (E

[E log p (4) I Otn) , Or) , o-2() , H)
ili

+ log p (Or) I Cr), -y(m), T(m), H)] ) , (16)

using the m = 1, . . . , M samples from the joint posterior distribution under model H. Instead

of averaging over the log-likelihood values, another possibility could be to use the maximum

log-likelihood value as an overall measure of fit, to be compared across models. In this case, the

MCMC sampling run should be large to cover all possible values of the log-likelihood under

the posited model.

Dempster (1997) and Aitkin (1997), considered the posterior distribution of the log-

likelihood ratio (LR). The strength of evidence against model H1 given model H2 can be

measured by (v, pv) , where p, is the posterior probability that the LR is less than v, that is,

Pv = P (1 T I 3r,ll1) 1 (0'2, 7, T I Y,H2) < logy I y) . (17)

The case v = 1 is of particular importance, since 1 pi is equal to the the posterior probability

that the LR is less than one. Aitkin suggests to vary v over possible values and assess changes

in the posterior probability pv that LR< v. The log-likelihood is a function of the data and



Multilevel IRT Using Dichotomous and Polytomous Response Data - 15

the parameters, and so has a posterior distribution obtainable from that of the parameters. The

sampled values from the MCMC run can be used to estimate the posterior probability p, by

checking how often the inner-statement in (17) is true given the sampled log-likelihood values

under both models.

Obviously, changes in the measurement model(s) and in the prior specifications are not

captured by this information criterion. LR comparisons are quite insensitive to prior changes,

and vary only for strongly informative priors. Below it will be shown that the LR ratio can be

used to compare models with each other regarding model changes in the multilevel part. On

the other hand, the PsBF, formula (15) , based on the response data via an IRT model, may not

always capture changes in the structural multilevel model.

Parameter Recovery

A simulation study was carried out to assess the performance of the MCMC estimation

procedure. To present some empirical idea about the performance of the estimation method 100

simulated data sets were analyzed. The following structural multilevel model was considered,

ez3 = 00; +

fio, = 'Yoo + + uoj

(18)

where eij ti N (0, (72) and uoi N N (0, 7-2) . At Level 1, a sample of 2, 000 students, divided

equally over 200 groups, responding to a test of 40 items with four response categories was

considered to measure the latent dependent variable. Responses to a test of 40 dichotomous

scored items belonging to, for example, group-representatives, were considered to measure the

latent Level 2 explanatory variable. For each data set, the latent abilities 9 and were sampled

from a standard normal distribution. The discrimination and difficulty parameters, regarding

the normal ogive model for measuring were sampled as follows; ak log N (exp(1),1) and

bk N (0, , k = 1, . . . , 40. The discrimination parameters in the graded response model

for measuring 9 were generated according to the same distribution. The threshold parameters

were choosen in such a way that the generated latent responses, according to formula (2) , were

divided into four response categories. The true population values of the unknown parameters,
0.2, r2 and -y are given in Table 1.

Table 1 here

For each of the 100 data sets the model parameters were estimated based on 19, 000
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draws from the joint posterior distribution, after a burn-in period of 1, 000 draws. Initial

values of the multilevel parameters were obtained by estimating the random coefficients model,

formula (18), by HLM (Raudenbush, Bryk, Cheong, & Congdon, 2000) using observed sum

scores as an estimate for the dependent and explanatory variable. Figure 1 shows MCMC

iterates of the variance parameter at Level 1, a-2, and variance parameter at Level 2, T2, of four

arbitrary simulated data sets.
Figure 1 here

The left four plots correspond to the sampled values of the Level 1 variance parameter

and the right four plots correspond to sampled values of the Level 2 variance parameter, for

four of the simulated data sets. Visual inspection shows that the chains converged quite fast

to the stationary distribution. The CODA software (Best et al., 1995) was used to check the

convergence of the MCMC chains. Geweke's convergence diagnostic was computed for the

several chains and p-values, given in Figure 1, indicate that the convergence of each chain is

plausible. Note that the p-values were computed based on the 19, 000 sampled values after the

burn-in period. As an additional check, multiple chains were run from different starting points,

for several simulated data sets, to verify that they resulted in similar answers. The computations

were performed on a 733 MHz pentium III, written in Fortran, and each run of 20, 000 iterations

took about two hours.

Table 1 presents the true parameters, the average of the mean, the average of the

posterior standard deviations, and the average 95% highest posterior density intervals (HPD)

over the 100 MCMC samples. Further, a 95% coverage for each parameter are given in Table

1. The coverage is the proportion of the 100 HPD regions covering the true parameter values.

It can be seen that there is a close agreement between the true parameters and the average

estimated means, and acceptable coverage properties. Although only 100 simulated data sets

were used, the average of the posterior standard deviations were comparable too the standard

deviation within the 100 posterior means, for each model parameter.

Model Comparison

Two alternative models were estimated using the simulated data sets to investigate

the performance of the pseudo-Bayes factor and the log-likelihood of the structural multilevel

model for model comparison. The first alternative model (Model 2) corresponds to the empty

model, that is, a structural multilevel model without any explanatory variables. The second

alternative model (Model 3) corresponds to the model where observed sum scores were imputed

for the latent dependent and explanatory variable. Accordingly, the true model will be denoted

18
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as Model 1.

Table 2 presents the results of estimating the parameters of Model 2 and 3 using the

same simulated data. Without the latent explanatory variable C there is a lot more unexplained

variance at Level 2 but the other parameter estimates of Model 2 remain almost the same.

Obviously, a higher variance at Level 2 induces a higher posterior standard deviation of the

fixed effect.
Table 2 here

Model 1 and Model 2 were compared in terms of the PsBF related to the observed

responses of the 2000 students on 40 items. The average PsBF across the 100 data sets for

Model 1 versus Model 2 is given by exp( -11267 + 11268) = exp (1) . Although the PsBF

is greater than 1, it cannot distinguish significantly Model 1 and Model 2 from each other.

This follows from the fact that the estimated latent dependent variables under Model 1 and

2 are almost the same. That is, the average mean square error between the estimated latent

dependent variables related to Model 1 and Model 2 over the L = 100 data sets is

2(1 ...;;.(1 2

MSE COmodel I, kodel 2) L lE 1V-1E(vi? 10,2?)

[L=1 i=1

(19)

and equals .05. Here, the Level 2 explanatory variable explained variance within the latent

dependent variable, but did not amount a lot of information in estimating the latent dependent

variable as a parameter of the measurement model. Therefore, the pseudo-Bayes factor did not

notify large differences between Model 1 and 2. The parameter estimates of the measurement

model hardly changed by changing the structural multilevel model.

The difference between Model 1 and Model 2 is much better captured by the log-

likelihood of the structural model. There is an explanatory variable missing in Model 2, and this

had an impact on the log-likelihood of the structural model. Figure 2 displays the estimated log-

likelihoods of the various models, ordered to the values of Model 1. Considering all simulated

data sets, the estimated log-likelihoods of Model 1, are significantly larger than the estimated

log-likehoods of Model 2, the empty model. This clearly demonstrates a preference of Model

1.
Figure 2 here

The average parameter estimates of Model 3 differ somewhat from the true parameter

values. Both, the variance at Level 1 and Level 2 were too large. The scale of the latent

dependent and explanatory variable in Model 1 equal the scale of the imputed observed sum

scores in Model 3. As a result, the parameter estimates are comparable and the same amount

19
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of variance can be explaind by both models. The observed sum scores displayed less variance

between students than the students' item responses. Accordingly, the covariate at Level 2

explains less variance between groups, and its coefficient is under-estimated. The estimates

of the variance at Level 1 and Level 2 are somewhat higher but the same amount of variance

is available in the dependent variable. So, Model 1 explains more variance and fits the data

better. Although the differences between log-likelihoods are small, in Figure 2, it can be seen

that overall Model 1 performs better than Model 3. The posterior probability of the LR ratio of

Model 3 against Model 1, formula (17) , was estimated, and the mean across the 100 datasets

equals for v = .1 and v = 1, p.1 = .150 and pi = .210, respectively. This provides evidence

that the LR is larger than one, indicating that Model 1 should be preferred above Model 3. The

mean square error, as defined in (19) , between the true simulated abilities, 0, andOmodel 1 equals

.04, whereas the mean square error between the true simulated abilities and bmodel 3 equals .62.

The simulated distributions of the latent variables, 9, C were both normal distributed. In Fox

and Glas (2002) it was shown that the differences between the observed sum scores and the

estimated abilities using IRT were much larger for skewed latent distributions.

Analyzing Multilevel Data with Measurement Error

The multilevel IRT model was used in the analysis of a mathematics test, administered

to 3,500 grade 7 students in 119 schools located in the West Bank. The mathematics test

consisted of 50 dichotomous scored items. Main interest was focused on exploring differences

within and between schools in the West Bank and establishing factors which explain these

differences with respect to students' mathematic abilities. Therefore, various background

variables were measured. That is, characteristics of students, teachers, and schools were

administered. Besides the mathematics and language test, an intelligence test (IQ) was

administered, gender was recorded, as zero for male and one for woman, and socio-economic

status (SES) was measured by the educational level of the parents. In the analyses, the observed

sum scores of the predictors IQ and SES were standardized.

Tests were taken by teachers and school principles to measure aspects, as the

school climate and leadership of the principle. The school climate (Climate), from teacher's

perspective, was measured by 23 5-point Likert items, and leadership (Leader) was measured

by 25 5-point Likert items. In the sampling design only one class was selected from each

school, so the data comprehended a student (Level 1) and school level (Level 2). A stratified

sample of schools ensured that all school types and all geographical districts were represented.

0
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The average number of students per class is 28, with a minimum of 10 and a maximum of 46

students. A complete description of the data, including the data collection procedure and the

different questionnaires, can be found in Shalabi (2002).

The variation in the test results of the mathematic items were modeled in terms of

single underlying abilities. That is, a two-parameter normal ogive model was used to define the

relationship between the observed responses and the latent dependent abilities in the stuctural

multilevel model. First, the variation in the math-abilities and heterogeneity across schools was

measured with an empty stuctural multilevel model, that is, only an intercept at Level 1 varying

across schools. Second, student characteristics were used as predictors to explain variation.

Third, the latent school characteristics, school climate and leadership, were used as Level 2

predictors on the Level 1 intercept.

The developed MCMC estimation procedure was applied to estimate the parameters of

the various models. All models were identified by transforming the scale of the latent variables

to a standardized normal scale. This way, the estimated parameters and log-likelihoods

were comparable. The convergence of the MCMC chains was monitored by comparing the

between and within variance of the generated Markov chains. Further, Geweke's convergence

diagnostic was computed for the several chains and indicated that chains of 50,000 iterations

had converged after a burn-in period of 1,000 iterations.

The empty model is called Model 1, and the structural multilevel model including the

three Level 1 predictors is called Model 2. Model 2 is given by,

Oij = 130i ± uSESij + 02iGenderii + /33jIQii + eii

fioi = loo + uoj

= 710

/32j 720

/33j = 730

(20)

where the error terms eii and uoi are independent and normally distributed with zero mean and

variances a2 and 7-2, respectively. The two-parameter normal ogive model was used to measure

the latent dependent variable. The parameter estimates of Model 1 and 2 are given in Table 3.
Table 3 here

Due to scaling is the population mean or grand mean of the math abilities, 700, zero.

The estimated intra-school correlation coefficient, from Model 1, is around .50, which means
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that around 50% of the total variance, due to individual differences in math abilities, can be

explained by school differences. For example, the difference between the nine worst and eight

best performing schools is 30% items correct. The three Level 1 predictors all have a positive

significant effect on students' mathematics achievement. The math abilities were scaled around

zero, so, female students performed better than male students. From Table 3 it can be seen that

the three Level 1 variables together account for a substantial proportion of variation in students'

achievement: 21% of the student level and 27% of the school level variance.

The relevance of the three Level 1 predictors is supported by the pseudo-Bayes factor

and the log-likelihood values of both models. The estimated pseudo-Bayes factor in favor of

Model 2 is exp( 96773 + 96837) = exp (64) and provide strong evidence that Model 2 fits

the data better. Besides, the log-likelihood of the structural multilevel model went up from

7285.9 to 6383.8. The p-value of the overall fit test statistic, formula (10), related to the

observed item responses, was around .5 for both models.

Model 2 was extended by including two latent predictors at Level 2, Leadership and

Climate. The estimated multilevel IRT model (Model 3) consists of three measurement models,

a two-parameter normal ogive model for measuring the latent depedendent variable, and two

graded response models for measuring the latent variables at Level 2 using the polytomous

scored item reponses. The structural multilevel part is given by

130i + 022Genderi3 + f33jIQaj + eZj

Ooi = 'Too + yin Climate; + 702Leaderi + u02

132j 720

03j = 730

(21)

where the explanatory variables at Level 2, Climate and Leader, are latent explanatory variables,

providing information regarding the management characteristics of the schools. All parameters

were estimated simultaneously using the developed MCMC sampler. The estimated multilevel

parameters are given in Table 4.
Table 4 here

Both predictors at Level 2 are significant, with a 5% significance level. The variable

Leader has a positive effect on the math abilities, but the effect of variable Climate is negative.

Both variables account for 8% of the school level variance. The p-values of the X2-discrepancy,
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corresponding to the Level 2 variables, were around .8, meaning that the averaged sum over

the standardized residuals based on predictive data were somewhat higher than the sum over

the standardized residuals based on the observed data. That is, the estimated graded response

models did not replicate data close to the observed data. The difference in the log-likelihood,

from 6383.8 (Model 2) to 6246.8, is not significant given the 95% highest posterior density

interval [-6452.1, 6034.6] for the log-likelihood of Model 3. The posterior probability Pt, ,

defined in (17) , for the LR of Model 3 against Model 2 equals .865 for v = .1. This means

that the posterior probability that the LR is less than .1 equals .865. Also, the pseudo-Bayes

factor, related to the observed data for measuring the latent dependent variable, did not show

a preference for Model 3. It turns out that the latent variables at Level 2, with significant

coefficients, did not result in a better model fit. The school organisational and instructional

variables, school climate and school leadership, are rarely investigated in developing countries

and proved to have not much of an influence on the students' mathematics abilities.

Analogous to a standard multilevel analysis, observed sum scores were used as

estimates for the latent mathematic abilities and the latent school variables, Climate and Leader.

Then, the Gibbs sampler, described in Appendix A, was used to estimate the parameters of

Model 3, formula (21), where the observed sum scores were scaled the same way as the latent

variables within the multilevel IRT Model 3. The parameter estimates are shown in Table 4.

It can be seen that the parameter estimates are lower than the estimates resulting from the

multilevel IRT model analysis, due to measurement error in the observed sum scores. The

estimate of the variance at Level 1 is higher and at Level 2 is lower, meaning that there

is more unexplained variance using observed sum scores. Less variance is explained due

to differences between schools and less variance is explained by the Level 1 characteristics,

SES, gender and IQ. The latent dependent variable measured with an IRT model displays

more differences between students than the observed sum scores, that is, the observed sum

scores display less variance between students than the students' item responses. The effects

of the Level 2 variables were lower when observed sum scores were used, both effects are

still significant. As in the corresponding multilevel IRT analysis, the estimated log-likelihood

of Model 3 is not significantly higher than the estimated log-likelihood of Model 2 using

observed sum scores, from 6445.3 (Model 2) to 6368.6. The estimates are smaller than the

corresponding multilevel IRT log-likelihoods. The log-likelihood of the structural multilevel

model is maximized using the multilevel IRT model, in spite of a poor fit of the graded response

models.

In sum, primary schools in the West Bank differ a lot, considering the math abilities of
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the students, but the school context, measured by climate and leader, did not explain much

variation at Level 2. The Level 1 characteristics SES, IQ and gender explained a lot of

variation at the student level. There was an increase in the effects of school characteristics

on students' achievements in comparison to traditional methods for analyzing these data.

Modeling measurement error in the latent dependent and independent explanatory variables

resulted in larger effects and more explained variance at both levels. The effects were attenuated

when traditional methods were used which ignored the measurement error, that is, using

observed sum scores as an estimate for the latent variables.

Conclusions

A multilevel IRT model has been proposed that contains latent dependent and/or

explanatory variables on different levels. Item response theory models are used to define

the relationship between observable test scores and the latent constructs. The model can

handle dichotomous and polytomous responses. The structural multilevel model describes the

relationship between different latent constructs and observed variables on different levels.

The simulation study shows that the Bayesian estimation method works well. The

MCMC algorithm is very flexible and allows the modeling of various latent variables on

different levels using dichotomous and/or polytomous responses. The flexibility of the

estimation procedure allows the use of other measurement error models and can handle

multilevel models with three or more levels. The estimation procedure takes the full error

structure into account and allow for errors in both the dependent and independent variables. The

Metropolis-Hastings algorithm is used to sample parameters via a proposal distribution from

which it is easy to sample. A good convergence of the algorithm is obtained by adjusting the

variance of the proposal distribution. The developed Bayesian estimation method for estimating

all parameters simultaneously is implemented in Fortran and freely available (Fox , 2003). The

program runs within the statistical package S-plus (Insightful, 2001).

The posterior predicticve checking provides information regarding the global fit

of the model. Within the framework of the posterior predictive checks, other specific

diagnostics can be developed to check assumptions as local independence, heteroscedasticity,

and autocorrelation. Since the MCMC run can be time-consuming, it contains the estimation of

the model parameters and the checking of some of the model assumptions. Various applications

and developments of complex psycometric models show this twofold use of the MCMC

samples, see, for example, Ansari and Jedidi (2000), Beguin and Glas (2001), and, Lee and

2
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Zhu (2000).

The pseudo-Bayes factor can be used to compare models with each other but it is

sensitive to the prior choice, and may not always reflect changes within the structural model.

Therefore, modeling differences within the structural part are better assessed by looking at the

likelihood of the structural part. The complex likelihood of the multilevel IRT model reveals the

usefulness of looking at a part of the likelihood. The log-likelihood quantity could be extended

to penalise models which improve fit at the expense of more parameters, and so serves as a

measure to assess model parsimony. For example, a Bayesian Information Criterium (BIC)

could be defined to compare multilevel IRT models with different structural multilevel parts.

It is hard to give a general specification of when the multilevel IRT model will make a

substantive difference in the analysis, besides the theoretical considerations. In cases of skewed

distributions or cases where some of the responses to the items are missing the multilevel IRT

model is preferred. In case of missing response data, the MCMC estimation procedure for

complete data can be modified in such a way that only the available data are used. This is done

by defining an indicator variable that specifies the items that are administered, and the persons

who are responding. The example showed a better fit of the multilevel IRT model. In case of a

smaller number of Level 1 units or response items, or bad fit of one of the measurement models,

a multilevel model with observed sum scores could be preferred. In general, more research is

needed to obtain rules for choosing between these models in different situations.

In the present paper, the measurement models, within the multilevel IRT model,

assume that the ability parameter is unidimensional. In some situations, a priori information

may show that multiple abilities are involved in producing the observed response patterns.

Then, a multidimensional IRT model serves to link the observed response data to several

latent variables. The multilevel IRT model could be extended to handle these correlated latent

variables within the structural multilevel model. Two options are possibile, one of the correlated

latent variables is a dependent variable or all latent variables are explanatory variables within

the structural multilevel model. This way, the dependency structure and other person and group

characteristics can be taken into account in analysing the relation between multidimensional

latent abilities. The parameters of a normal ogive multidimensional IRT models can be

estimated within a Bayesian framework using the Gibbs sampler (Beguin & Glas, 2001).

Accordingly, the parameters of this extended multilevel IRT model can be estimated within

a Bayesian framework using MCMC, by defining the full conditionals of all parameters.

25
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Appendix A. The MCMC Implementation

The Gibbs sampler consists of stepwise draws from the full conditional distributions.

The algorithm is specified by defining all the full conditional distributions. Accordingly,

the (m + 1)th iteration involves generating draws from these distributions. Below, an

implementation is given for an arbitrary latent variable in the structural multilevel model. In all

the steps, other possible latent variables are treated as observed variables. Obviously, the full

conditionals of other latent variables and parameters of the corresponding measurement models

can be obtained in the same way.

The first step is to augment the observed data, y, with latent data z. By defining a

continuous latent variable, z, that underlies the binary or polytomous response it is easier

to sample from the conditional distributions of the parameters of interest. This augmented

data, as defined in formula (2) and below formula (1) , serve to simplify calculations. This

procedure has been widely applied, see, for example, Albert (1992), and Johnson and Albert

(1999). Let z denote the augmented data regarding the observed binary or polytomous data, y,

for measuring the latent ability 0. Accordingly, let 0 be an arbitrary latent variable within the

structural multilevel model.

(1) The conditional distribution of the discrimination and difficulty parameters in the normal

ogive model, formula (1) , can be obtained by viewing these parameters as coefficients in

the regression of z on H = [0,-1]. It follows that,

0, Zk N (Zk, (Ht11) 1) I (ak > 0) 1 (ak E A) , (22)

where Sk = (ak, bk) , and A a sufficiently large bounded interval. The full conditional

distribution of the discrimination parameter in the graded response model, formula (4) , can

be obtained in the same way.

(2) The conditional distribution of the threshold parameter is difficult to specify. Therefore, a

candidate n;` , regarding the thresholds of item k, is sampled from a proposal distribution,

formula (9) , from which it is easy to sample. The candidate is accepted or rejected based
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on the Metropolis-Hastings acceptance probability,

4'

[11

(tc4,k akeii) (iczy,k_, akeii)

(I) (nicyji,k akeij) (13 akeii)

Ck-1 /
Fr w knicc-Hl /aMH (kic`c-1 /Grit/H
11

(1) (11 i nic-4-1 4c) bsrmii (1. (nkc-i Kicc) /0MH

where denotes the response of person ij on item k. For the other parameters the sampled

values from the last iteration are used. The first part represents the contribution from the

likelihood whereas the second part represents normalized proposal distributions.

The conditional distribution of the latent variable O. The latent variable is a dependent vari-

able or an independent variable at Level 1 or Level 2 in the structural multilevel model. In all

three cases, the conditional distribution is a product of two normal distributions and the full

conditional distribution follows from standard properties of normal distributions (Lindley &

Smith, 1972). In all cases, one part follows from the measurement model, where can be

viewed as a regression coefficient in the regression from zijk bk or zijk on ak in case of a

binary or polytomous data, respectively. Here, the three separate cases are described using

the graded response model.

- Dependent latent variable Oij. It follows from, formula (2) and (5) , that

+ Xiii3j/o-2 1
Oii I Zip, y N

llv +110-2 llv +1Io-2
(23)

with ki = Ek akzijk/ Ek aZ and v = 1/ Ek at2c.

Explanatory latent variable Oki at Level 1. Again, from formula (2) and (5) , it follows

that

eii I Zji 13i Cr 2 N +kJ/0 1

1Iv +110 11v +110) (24)

where the posterior expectation constitutes of Bij, as defined above, and a term Bij =

(wij )13.1Xi7j) , and the posterior variances of v and q5 = /3;a-2, where So is the

regression coefficent of Oki and [3.pq the product of regression coefficients and ex-

planatory variables at Level 1 witout the latent variable Oij.

27
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Explanatory latent variable 9j at Level 2. In the same way, it follows that

93 I Z3 ) /3j lfq T, y N
-FO310 1

+110 liv +110) (25)

where again T)i is the least squares estimator following from the measurement model,

formula (2) , and = y (Qq; WT) with q5 = Tqq/-49, where -yqs is the regres-

sion coefficient of explanatory variable 9j, and -y;iWi is the product of other regression

coefficients and explanatory variables. When defining a normal distributed prior for 9,

formulae (23) , (24) , and (25) are easily extended, see Fox and Glas (2002).

(4) The full conditional for the regression coefficient, f3j. Let X and W be the explanatory

variables at Level 1 and 2, respectively, including any latent explanatory variables. From

formula (5) , and a noninformative prior, it follows that

(f3 I 0.2,1,, '" XtiXii jiI cr2 + TINV .17 1

XtXi /0-2 + T-1 ' XtXi/o-2 + T-1 '
(26)

where 73i = X.tiwi. The matrix Xi does not need to be-of full rank, since the

inverse of XtiXi is not needed.

(5) The full conditional for the fixed effects, -y. Again, W represents the explanatory variables

at Level 2, including the latent variables at Level 2. From formula (5) , and a noninformative

prior, it follows that

E. voT-10. 1
N E; min-1w; ) (27)

(6) The full conditional for the variance at Level 1, o-2. A prior for the variance can be spec-

ified in the form of an inverse-gamma (IG) distribution with shape and scale parameters,

(no /2, noSo /2). So is a prior guess and no displayes the strength of this belief. It follows

that

(N n°
NS + noSo )

0-21(3, y IG +2 , (28)

where S = Eilj 1/ni Xiift ) 2
. A non-informative but proper prior is specified if

no = .0001 and So = 1 (Congdon, 2002).

(7) The full conditional for the variance at Level 2, T. An inverse Wishart distribution with

small degrees of freedom, but greater than the dimension of i3j, no, and unity-matrix, So,

28
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can be used as a diffuse proper prior for T. It follows that

T I 0,-y , y Inv-Wishart (no + J, (S + So)-1)

where S = Ei (fij Wry) (19; WcY) t
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Figure 1. MCMC iterations of the variance parameters corresponding to the multilevel IRT
model. The p-values correspond to the Geweke convergence diagnostic.
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Table 1. Generating values, means and standard errors of recovered values

Fixed
Effects

Generated Multilevel IRT
Coeff. Mean of Estimates Standard Deviation HPD Coverage

-Yoo

7oi

Random
Effects

1.25
1

1.254
.996

.069

.069
[1.122,1.387]

[.858,1.127]
.94
.96

Var. Comp. Var. Comp. Standard Deviation HPD Coverage

Cf
2 .9 .900 .033 [.837, .964] .86

T2 .75 .780 .095 [.600,.967] .92

Table 2. Parameter estimates of two alternative models

Fixed
Effects

Emty Model Multilevel Model
Mean of
Estimates

Standard HPD
Deviation

Covr. Mean of
Estimates

Standard
Deviation

HPD Covr.

loo
7oi

Random
Effects

1.249 .108 [1.053, 1.457] .99 1.247
.934

.067

.067
[1.114, 1.377]
[0.780, 1.063]

.96

.84

Variance
Components

Standard HPD
Deviation

Cow. Variance
Components

Standard
Deviation

HPD Covr.

.902 .033 [.838, .966] .86 .940 .031 [0.878, 1.001] .67
T2 1.780 .191 [1.424, 2.163] 0 .809 .092 [0.637, .991] .93

Table 3. Parameter estimates of Model 1 and 2

Model 1 Model 2
Fixed Coefficient Standard HPD Coefficient Standard HPD

Effects Deviation Deviation

loo .005 .066 [-.130,.131] -.097 .064 [-.224, .028]
710 (SES) .124 .015 [.096, .153]

720 (Gender) .213 .061 [.093, .333]

730 (IQ) .351 .015 [.322, .380]

Random Variance Standard HPD Variance Standard HPD
Effects Components Deviation Components Deviation

a2 .515 .014 [.487, .543] .408 .012 [.385, .432]
T2 .507 .069 [.378, .646] .370 .052 [.282, .484]
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Table 4. Parameter estimates of multilevel IRT Model 3, and multilevel Model 3 using observed sum
scores

Fixed
Effects

Model 3 Model 3 (sum scores)
Coefficient Standard

Deviation
HPD Coefficient Standard

Deviation
HPD

loo -.095 .063 [-.218, .027] -.088 .059 [-.205, .026]
701 (Climate) .238 .084 [.070, .401] .205 .075 [.056, .350]

702 (Leader) -.126 .085 [-.298, .035] -.119 .075 [-.266, .028]

7io (SES) .125 .015 [.096, .153] .111 .014 [.084, .139]

720 (Gender) .211 .061 [.095, .332] .193 .055 [.084, .299]

73o (IQ) .351 .015 [.322, .381] .341 .015 [.311, .368]

Random Variance Standard HPD Variance Standard HPD
Effects Components Deviation Components Deviation

0'2 .408 .012 [.385, .432] .471 .012 [.448, .494]
T2 .340 .050 [.248, .438] .314 .044 [.235, .405]
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